Sains Malaysiana 52(9)(2023): 2689-2697

http://doi.org/10.17576/jsm-2023-5209-17

 

Study on Effect of Toluene-Acid Treatments of Recycled Carbon Black from Waste Tyres: Physico-Chemical Analyses and Adsorption Performance

(Kajian Kesan Rawatan Asid Toluena Karbon Hitam Kitar Semula daripada Bahan Buangan Tayar: Analisis Fiziko-Kimia dan Prestasi Penjerapan)

 

NUR ALIA SAHIRA AZMI1, KAM SHENG LAU1, SIEW XIAN CHIN2, SARANI ZAKARIA1, SHAHARIAR CHOWDHURY3,4& CHIN HUA CHIA1,*

 

1Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2ASASIpintar Program, Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Faculty of Environmental Management, Prince of Songkla University, Hatyai-90110, Songkhla, Thailand

4Research Center on Industrial Ecology in Energy, Faculty of Environmental Management, Prince of Songkla University HatYai-90110, Songkhla, Thailand

 

Received: 5 May 2023/Accepted: 31 August 2023

 

Abstract

Recycled carbon black (rCB) produced by pyrolysis has a low value because it contains high levels of impurities, such as sulfur, nitrogen, and oxygen. Various treatments have been proposed using chemicals to purify and improve the properties of rCB. In this study, rCB was treated with toluene (rCB-T), followed by subsequent treatment using acids HCl (rCB-T-HCl), HNO3 (rCB-T-HNO3), and HCl-HNO3 (rCB-T-HCl-HNO3). The treated rCB samples were characterized using CHNS analyser, scanning electron microscope, BET analyser, zeta potential, Fourier transform infrared spectroscopy, and Raman spectroscopy. The adsorption of methylene blue dye onto the rCB samples was also investigated to study the effectiveness of the treatments. Treatment with toluene alone was insufficient to increase the carbon content and surface area of the rCB. Subsequent treatment of rCB with acids, especially HNO3, significantly increases the carbon content, surface area, surface functional groups, and surface charge of the rCB. This results in an increased adsorption capacity of the rCB, from 6.04 mg/g to 46.51 mg/g for the rCB-HNO3 and 54.80 mg/g for the rCB-T-HCl-HNO3.

 

Keywords: Adsorption; BET; carbon black; toluene; zeta potential

 

Abstrak

Karbon hitam (rCB) kitar semula yang dihasilkan oleh pirolisis mempunyai nilai yang rendah kerana ia mengandungi tahap kekotoran yang tinggi, seperti sulfur, nitrogen dan oksigen. Pelbagai rawatan telah dicadangkan menggunakan bahan kimia untuk membersih dan menambahbaik sifat rCB. Dalam kajian ini, rCB telah dirawat dengan toluena (rCB-T), diikuti dengan rawatan seterusnya menggunakan asid HCl (rCB-T-HCl), HNO3 (rCB-T-HNO3) dan HCl-HNO3 (rCB-T-HCl-HNO3). Sampel rCB yang dirawat telah dicirikan menggunakan penganalisis CHNS, pengimbasan mikroskop elektron, penganalisis BET, potensi zeta, spektroskopi inframerah transformasi Fourier dan spektroskopi Raman. Penjerapan pewarna biru metilena pada sampel rCB juga dikaji untuk melihat keberkesanan rawatan. Rawatan dengan toluena sahaja tidak mencukupi untuk meningkatkan kandungan karbon dan luas permukaan rCB. Rawatan seterusnya rCB dengan asid, terutamanya HNO3 meningkatkan kandungan karbon, luas permukaan, kumpulan fungsi permukaan dan cas permukaan rCB dengan ketara. Ini menghasilkan peningkatan kapasiti penjerapan rCB, daripada 6.04 mg/g kepada 46.51 mg/g untuk rCB-HNO3 dan 54.80 mg/g untuk rCB-T-HCl-HNO3.

 

Kata kunci: BET; karbon hitam; keupayaan zeta; penjerapan; toluena

 

REFERENCES

Allwar, A., Hartati, R. & Fatimah, I. 2017. Effect of nitric acid treatment on activated carbon derived from oil palm shell. In AIP Conference Proceedings 1823: 02019. https://doi.org/10.1063/1.4978202

Cardona-Uribe, N., Betancur, M. & Martínez, J.D. 2021. Towards the chemical upgrading of the recovered carbon black derived from pyrolysis of end-of-life tires. Sustainable Materials and Technologies 28: e00287. https://doi.org/10.1016/j.susmat.2021.e00287

Chaala, A., Darmstadt, H. & Roy, C. 1996. Acid-base method for the demineralization of pyrolytic carbon black. Fuel Processing Technology 46(95): 1-15.

Chen, J.P. & Wu, S. 2004. Acid/base-treated activated carbons: Characterization of functional groups and metal adsorptive properties. Langmuir 20: 2233-2242.

Choi, G.G., Jung, S.H., Oh, S.J. & Kim, J.S. 2014. Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char. Fuel Processing Technology 123: 57-64. https://doi.org/10.1016/j.fuproc.2014.02.007

Costa, S.M.R., Fowler, D., Carreira, G.A., Inês, P. & Carlos, M.S. 2022. Production and upgrading of recovered carbon black from the pyrolysis of end‐of‐life tires. Materials 15(6): 2030.

Dabic-Miletic, S., Simic, V. & Karagoz, S. 2021. End-of-life tire management: A critical review. Environmental Science and Pollution Research 28(48): 68053-68070. https://doi.org/10.1007/s11356-021-16263-6

Dong, P., Maneerung, T., Cheng, W., Zhen, X., Dai, Y., Tong, Y.W., Ting, Y.P., Nuo, K.S., Wang, C.H. & Neoh, K.G. 2017. Chemically treated carbon black waste and its potential applications. Journal of Hazardous Materials 321: 62-72. https://doi.org/10.1016/j.jhazmat.2016.08.065

Galli, E. 1982. Carbon Blacks.  Plastics Compounding 5(2): 1-5.

Galvagno, S., Casu, S., Casabianca, T., Calabrese, A. & Cornacchia, G.  2002. Pyrolysis process for the treatment of scrap tyres: Preliminary experimental results. Waste Management 22(8): 917-923. https://doi.org/10.1016/S0956-053X(02)00083-1

Gomez-Serrano, V., Pastor-Villegas, J., Perez-Florindo, A., Duran-Valle, C. & Valenzuela-Calahorro, C. 1996. FT-IR study of rockrose and of char and activated carbon. Journal of Analytical and Applied Pyrolysis 36(1): 71-80. https://doi.org/10.1016/0165-2370(95)00921-3

Ida, Rana, Sugatri Yudo, Chandrasa Wirasadewa, Kurniawan Eko, Ersan Yudhapratama Muslih, Radyum Ikono, and Muhamad Nasir. 2017. “Recycled Carbon Black from Waste of Tire Industry: Thermal Study.” Microsystem Technologies 24: 749–55. https://doi.org/10.1007/s00542-017-3397-6.

Iraola-Arregui, I., Van Der Gryp, P. & Görgens, J.F. 2018. A review on the demineralisation of pre- and post-pyrolysis biomass and tyre wastes. Waste Management 79: 667-688. https://doi.org/10.1016/j.wasman.2018.08.034

Jiang, G., Pan, J., Deng, W., Sun, Y., Guo, J., Che, K., Yang, Y., Lin, Z., Sun, Y., Huang, C. & Thong, Z. 2022. Recovery of high pure pyrolytic carbon black from waste tires by dual acid treatment. Journal of Cleaner Production 374: 133893. https://doi.org/10.1016/j.jclepro.2022.133893

Juma, M., Koreňová, Z., Markoš, J., Annus, J. & Jelemensky, L. 2007. Pyrolysis and combustion of scrap tire. Polymers for Advanced Technologies 18(2): 144-148. https://doi.org/10.1002/pat.811

Martínez, J.D., Cardona-Uribe, N., Murillo, R., García, T. & López, J.M. 2019.
Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding. Waste Management 85: 574-584. https://doi.org/10.1016/j.wasman.2019.01.016

Martínez, J.D., Puy, N., Murillo, R., García, T., Navarro, M.V. & Mastral, A.M. 2013. Waste tyre pyrolysis - A review. Renewable and Sustainable Energy Reviews 23: 179-213. https://doi.org/10.1016/j.rser.2013.02.038

Mikulova, Z., Sedenkova, I., Matejova, L., Večeř, M. & Dombek, V.  2013. Study of carbon black obtained by pyrolysis of waste scrap tyres. Journal of Thermal Analysis and Calorimetry 111(2): 1475-1481. https://doi.org/10.1007/s10973-012-2340-4

Mountjoy, E., Hasthanayake, D. & Freeman, T. 2015. Stocks & Fate of End of Life Tyres - 2013-14 Study. Report of the National Environment Protection Council. http://www.nepc.gov.au/system/files/resources/8f17c03e-1fe7-4c93-8c6d-fb4cdc1b40bd/files/stocks-and-fate-end-life-tyres-2013-14-study.pdf

Park, K.H., Lee, C.H., Ryu, S.K. & Yang, X. 2007. Zeta-potentials of oxygen and nitrogen enriched activated carbons for removal of copper ion. Carbon Letters 8(4): 321-325. https://doi.org/10.5714/cl.2007.8.4.321

Ren, Y., Shui, H., Peng, C., Liu, H. & Hu, Y. 2011. Solubility of elemental sulfur in pure organic solvents and organic solvent-ionic liquid mixtures from 293.15 to 353.15K. Fluid Phase Equilibria 312(1): 31-36. https://doi.org/10.1016/j.fluid.2011.09.012

Roy, C., Rastegar, A., Kaliaguine, S., Darmstadt, H. & Tochev, V. 1994. Physicochemical properties of carbon blacks from vacuum pyrolysis of used tires.  Plastics, Rubber and Composites Processing and Applications 23(1): 21-30.

Sajab, M., Wan Jusoh, W.N.L., Mohan, D., Kaco, H. & Baini, R. 2023. 3D printed functionalized nanocellulose as an adsorbent in batch and fixed-bed systems. Polymers 15(4): 1-12. https://doi.org/10.3390/polym15040969

Selbes, M., Yilmaz, O., Khan, A.A. & Karanfil, T. 2015. Leaching of DOC, DN, and inorganic constituents from scrap tires. Chemosphere 139: 617-623. https://doi.org/10.1016/j.chemosphere.2015.01.042

Shah, J., Jan, M.R., Mabood, F. & Shahid, M. 2006. Conversion of waste tyres into carbon black and their utilization as adsorbent. Journal of the Chinese Chemical Society 53: 1085-1089.

Sugatri, R.I., Wirasadewa, Y.C., Saputro, K.E., Muslih, E.Y., Ikono, R. & Nasir, M. 2017. Recycled carbon black from waste of tire industry: Thermal study. Microsystem Technologies 24: 749-755. https://doi.org/10.1007/s00542-017-3397-6

Torretta, V., Rada, E.C., Ragazzi, M., Trulli, E., Istrate, I.A. & Cioca, L.I. 2015. Treatment and disposal of tyres: Two EU approaches. A review. Waste Management 45: 152-160. https://doi.org/10.1016/j.wasman.2015.04.018

Yang, H., Liu, J., Pang, B. & Chi, J. 2021. Effect of different pretreatment methods on pore structure of activated carbon. Journal of Physics: Conference Series 1774(1): 012067. https://doi.org/10.1088/1742-6596/1774/1/012067

Zhang, X., Li, H., Cao, Q., Jin, L. & Wang, F. 2018. Upgrading pyrolytic residue from waste tires to commercial carbon black. Waste Management and Research 36(5): 436-444. https://doi.org/10.1177/0734242X18764292

 

*Corresponding author; email: chia@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous