Sains Malaysiana 52(9)(2023):
2689-2697
http://doi.org/10.17576/jsm-2023-5209-17
Study on Effect of Toluene-Acid
Treatments of Recycled Carbon Black from
Waste Tyres: Physico-Chemical
Analyses and Adsorption
Performance
(Kajian Kesan Rawatan Asid Toluena Karbon Hitam Kitar Semula daripada Bahan Buangan Tayar: Analisis Fiziko-Kimia dan Prestasi Penjerapan)
NUR
ALIA SAHIRA AZMI1, KAM SHENG LAU1, SIEW XIAN CHIN2,
SARANI ZAKARIA1, SHAHARIAR CHOWDHURY3,4& CHIN HUA CHIA1,*
1Materials Science Program, Department of Applied Physics, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2ASASIpintar Program, Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Faculty of Environmental Management, Prince of Songkla University, Hatyai-90110, Songkhla, Thailand
4Research Center on Industrial Ecology in Energy, Faculty of
Environmental Management, Prince of Songkla University HatYai-90110, Songkhla, Thailand
Received: 5 May 2023/Accepted: 31 August 2023
Abstract
Recycled carbon black (rCB) produced by
pyrolysis has a low value because it contains high levels of impurities, such
as sulfur, nitrogen, and oxygen. Various treatments have been proposed using
chemicals to purify and improve the properties of rCB.
In this study, rCB was treated with toluene (rCB-T), followed by subsequent treatment using acids HCl (rCB-T-HCl),
HNO3 (rCB-T-HNO3), and HCl-HNO3 (rCB-T-HCl-HNO3).
The treated rCB samples were characterized using CHNS analyser, scanning electron microscope, BET analyser, zeta potential, Fourier transform infrared
spectroscopy, and Raman spectroscopy. The adsorption of methylene blue dye onto
the rCB samples was also investigated to study the
effectiveness of the treatments. Treatment with toluene alone was insufficient
to increase the carbon content and surface area of the rCB.
Subsequent treatment of rCB with acids, especially
HNO3, significantly increases the carbon content, surface area,
surface functional groups, and surface charge of the rCB.
This results in an increased adsorption capacity of the rCB,
from 6.04 mg/g to 46.51 mg/g for the rCB-HNO3 and 54.80 mg/g for the
rCB-T-HCl-HNO3.
Keywords: Adsorption; BET; carbon black; toluene; zeta potential
Abstrak
Karbon hitam (rCB) kitar semula yang dihasilkan oleh pirolisis mempunyai nilai
yang rendah kerana ia mengandungi tahap kekotoran yang tinggi, seperti sulfur,
nitrogen dan oksigen. Pelbagai rawatan telah dicadangkan menggunakan bahan
kimia untuk membersih dan menambahbaik sifat rCB. Dalam kajian ini, rCB telah
dirawat dengan toluena (rCB-T), diikuti dengan rawatan seterusnya menggunakan
asid HCl (rCB-T-HCl), HNO3 (rCB-T-HNO3) dan HCl-HNO3
(rCB-T-HCl-HNO3). Sampel rCB yang dirawat telah dicirikan
menggunakan penganalisis CHNS, pengimbasan mikroskop elektron, penganalisis
BET, potensi zeta, spektroskopi inframerah transformasi Fourier dan
spektroskopi Raman. Penjerapan pewarna biru metilena pada sampel rCB juga dikaji untuk melihat keberkesanan rawatan.
Rawatan dengan toluena sahaja tidak mencukupi untuk meningkatkan kandungan
karbon dan luas permukaan rCB. Rawatan seterusnya rCB dengan asid, terutamanya
HNO3 meningkatkan kandungan karbon, luas permukaan, kumpulan fungsi
permukaan dan cas permukaan rCB dengan ketara. Ini menghasilkan peningkatan
kapasiti penjerapan rCB, daripada 6.04 mg/g kepada 46.51 mg/g untuk rCB-HNO3 dan 54.80 mg/g untuk rCB-T-HCl-HNO3.
Kata kunci: BET; karbon hitam;
keupayaan zeta; penjerapan; toluena
REFERENCES
Allwar, A., Hartati, R. & Fatimah, I. 2017.
Effect of nitric acid treatment on activated carbon derived from oil palm
shell. In AIP Conference Proceedings 1823: 02019.
https://doi.org/10.1063/1.4978202
Cardona-Uribe, N., Betancur,
M. & Martínez, J.D. 2021. Towards the chemical
upgrading of the recovered carbon black derived from pyrolysis of end-of-life
tires. Sustainable Materials and Technologies 28: e00287.
https://doi.org/10.1016/j.susmat.2021.e00287
Chaala, A., Darmstadt, H. & Roy, C. 1996. Acid-base method for the
demineralization of pyrolytic carbon black. Fuel Processing Technology 46(95): 1-15.
Chen, J.P. & Wu, S. 2004. Acid/base-treated
activated carbons: Characterization of functional groups and metal adsorptive properties. Langmuir 20: 2233-2242.
Choi, G.G., Jung, S.H., Oh, S.J. & Kim,
J.S. 2014. Total utilization of waste tire rubber through pyrolysis to obtain
oils and CO2 activation of pyrolysis char. Fuel Processing Technology 123: 57-64. https://doi.org/10.1016/j.fuproc.2014.02.007
Costa, S.M.R., Fowler, D.,
Carreira, G.A., Inês, P. & Carlos, M.S. 2022.
Production and upgrading of recovered carbon black from the pyrolysis of
end‐of‐life tires. Materials 15(6): 2030.
Dabic-Miletic, S., Simic, V. & Karagoz,
S. 2021. End-of-life tire management: A critical review. Environmental
Science and Pollution Research 28(48): 68053-68070.
https://doi.org/10.1007/s11356-021-16263-6
Dong, P., Maneerung,
T., Cheng, W., Zhen, X., Dai, Y., Tong, Y.W., Ting, Y.P., Nuo,
K.S., Wang, C.H. & Neoh, K.G. 2017. Chemically
treated carbon black waste and its potential applications. Journal of
Hazardous Materials 321: 62-72.
https://doi.org/10.1016/j.jhazmat.2016.08.065
Galli, E. 1982. Carbon Blacks. Plastics Compounding 5(2): 1-5.
Galvagno, S., Casu, S.,
Casabianca, T., Calabrese, A. & Cornacchia, G. 2002.
Pyrolysis process for the treatment of scrap tyres:
Preliminary experimental results. Waste Management 22(8): 917-923.
https://doi.org/10.1016/S0956-053X(02)00083-1
Gomez-Serrano, V., Pastor-Villegas, J., Perez-Florindo, A., Duran-Valle, C. & Valenzuela-Calahorro, C. 1996. FT-IR study of rockrose and of char and
activated carbon. Journal of Analytical and Applied Pyrolysis 36(1):
71-80. https://doi.org/10.1016/0165-2370(95)00921-3
Ida, Rana, Sugatri Yudo, Chandrasa Wirasadewa, Kurniawan Eko, Ersan Yudhapratama Muslih, Radyum Ikono, and Muhamad Nasir. 2017. “Recycled Carbon Black from Waste of Tire Industry: Thermal Study.” Microsystem Technologies 24: 749–55. https://doi.org/10.1007/s00542-017-3397-6.
Iraola-Arregui, I., Van
Der Gryp, P. & Görgens, J.F. 2018. A
review on the demineralisation of pre- and
post-pyrolysis biomass and tyre wastes. Waste
Management 79: 667-688. https://doi.org/10.1016/j.wasman.2018.08.034
Jiang, G., Pan, J., Deng, W., Sun, Y., Guo, J., Che, K., Yang, Y., Lin,
Z., Sun, Y., Huang, C. & Thong, Z. 2022. Recovery of high pure pyrolytic
carbon black from waste tires by dual acid treatment. Journal of Cleaner
Production 374: 133893. https://doi.org/10.1016/j.jclepro.2022.133893
Juma, M., Koreňová, Z., Markoš,
J., Annus, J. & Jelemensky,
L. 2007. Pyrolysis and combustion of scrap tire. Polymers for Advanced
Technologies 18(2): 144-148. https://doi.org/10.1002/pat.811
Martínez, J.D., Cardona-Uribe, N., Murillo, R., García,
T. & López, J.M. 2019.
Carbon black recovery from waste tire pyrolysis by demineralization: Production
and application in rubber compounding. Waste Management 85: 574-584. https://doi.org/10.1016/j.wasman.2019.01.016
Martínez, J.D., Puy, N., Murillo, R., García, T., Navarro, M.V. & Mastral,
A.M. 2013. Waste tyre pyrolysis - A review. Renewable
and Sustainable Energy Reviews 23: 179-213.
https://doi.org/10.1016/j.rser.2013.02.038
Mikulova, Z., Sedenkova, I., Matejova,
L., Večeř, M. & Dombek,
V. 2013. Study of carbon black obtained
by pyrolysis of waste scrap tyres. Journal of
Thermal Analysis and Calorimetry 111(2): 1475-1481.
https://doi.org/10.1007/s10973-012-2340-4
Mountjoy, E., Hasthanayake, D. & Freeman, T.
2015. Stocks & Fate of End of Life Tyres -
2013-14 Study. Report of the National Environment Protection Council.
http://www.nepc.gov.au/system/files/resources/8f17c03e-1fe7-4c93-8c6d-fb4cdc1b40bd/files/stocks-and-fate-end-life-tyres-2013-14-study.pdf
Park, K.H., Lee, C.H., Ryu,
S.K. & Yang, X. 2007. Zeta-potentials of oxygen and nitrogen enriched
activated carbons for removal of copper ion. Carbon Letters 8(4):
321-325. https://doi.org/10.5714/cl.2007.8.4.321
Ren, Y., Shui, H.,
Peng, C., Liu, H. & Hu, Y. 2011. Solubility of elemental sulfur in pure
organic solvents and organic solvent-ionic liquid mixtures from 293.15 to
353.15K. Fluid Phase Equilibria 312(1): 31-36.
https://doi.org/10.1016/j.fluid.2011.09.012
Roy, C., Rastegar,
A., Kaliaguine, S., Darmstadt, H. & Tochev, V. 1994. Physicochemical properties of carbon
blacks from vacuum pyrolysis of used tires. Plastics, Rubber and Composites Processing and Applications 23(1): 21-30.
Sajab, M., Wan Jusoh, W.N.L., Mohan, D., Kaco, H. & Baini, R. 2023. 3D
printed functionalized nanocellulose as an adsorbent
in batch and fixed-bed systems. Polymers 15(4): 1-12.
https://doi.org/10.3390/polym15040969
Selbes, M., Yilmaz, O., Khan, A.A. & Karanfil,
T. 2015. Leaching of DOC, DN, and inorganic constituents from scrap tires. Chemosphere 139: 617-623. https://doi.org/10.1016/j.chemosphere.2015.01.042
Shah, J., Jan, M.R., Mabood,
F. & Shahid, M. 2006. Conversion of waste tyres into carbon black and their utilization as adsorbent. Journal of the Chinese
Chemical Society 53: 1085-1089.
Sugatri, R.I., Wirasadewa, Y.C., Saputro,
K.E., Muslih, E.Y., Ikono,
R. & Nasir, M. 2017. Recycled carbon black from waste of tire industry:
Thermal study. Microsystem
Technologies 24: 749-755.
https://doi.org/10.1007/s00542-017-3397-6
Torretta, V., Rada, E.C.,
Ragazzi, M., Trulli, E., Istrate, I.A. & Cioca, L.I. 2015. Treatment and disposal of tyres: Two EU
approaches. A review. Waste Management 45: 152-160.
https://doi.org/10.1016/j.wasman.2015.04.018
Yang, H., Liu, J., Pang, B. &
Chi, J. 2021. Effect of different pretreatment methods on pore structure of
activated carbon. Journal of Physics: Conference Series 1774(1): 012067.
https://doi.org/10.1088/1742-6596/1774/1/012067
Zhang, X., Li, H., Cao, Q., Jin,
L. & Wang, F. 2018. Upgrading pyrolytic residue from waste tires to
commercial carbon black. Waste Management and Research 36(5): 436-444. https://doi.org/10.1177/0734242X18764292
*Corresponding author; email: chia@ukm.edu.my
|